
.; OF THI PAGFflT'D
1UJJ ILL r'J IForm Approved

REPORT DOCUMENTATION AGE OMB No. 0704-0188

I . REPORT SECURITY CLASSIFICATION C' lb RESTRICTIVE MARKINGS

3F4G.3 DISTRIBUTION/AVAILABILITY OF REPORT

rft * C"Approved for Public Relea3e;
Distribution Unlimited

AD-A201 481 R MONITORING ORGANIZATION REPORT NUMBER(S)

01KFOSR-Th- 88-1164
6a. NAME OF PERFORMING ORGANIZATION 6b. ICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

UNIVERSITY OF KENTUCKY AFOSR/NA

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

DEPT. OF CIVIL ENGINEERING Bldg. 410
LEXINGTON, KY 40506-0046 Boiling AFB, DC 20332-6448

Ba. NAME OF FUNDING/SPONSORING I8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
AFOSR NA AFOSR-84-0195

.ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Bldg. 410 PROGRAM PROJECT ITASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.Boiling AFB, DC 20332-6448 6.12 I 32C

610F 2302 Cl

11. TITLE (Include Security Classification) (U)

THREE-DIMENSIONAL ELASTO-PLASTIC ANALYSIS FOR SOILS (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)

HARDIN, B. 0. AND BLANDFORD, G. E.

13a. TYPE OF REPORT 113b TIME COVERED "14. DATE OF REPORT (Year, Month, Day) 115. P AGE COUNT
FINAL FROM 6/15/8 4 TO8/14 /88  October 15, 1988 I 3

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP ELASTO-PLASTIC NONLINEAR THREE-DIMENSIONAL

FINITE ELE11ENT SOILS

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

-AThis report presents- he U.S. Air Force Office of Scientific Research contract
(Project No. AFOSR-84-0195) accomplishments in perfecting the elasto-plastic constitutive
equations of Hardin (1973) and their implementation into EPSAP (Elasto-Plastic Soil
Analysis Program). Essential features of soil behavior that result from the soil
skeleton being particulate are included in the soil model. It is recognized that the
plastic behavior of particulate materials depends on direction of the effective stress
increment as well as state of effective stress. Two classes of stress increment
directions are defined with different plastic potential and hardening functions for each
class.

Specific research eonsidered during the contract period has dealt with: (1) crushing
of soil particles; (2) modeling soil strength in terms of effective stress; 3) modifi-
cations of the Class 1 plastic potential function; (4) modeling work softening behavior
for Class 1 plastic hardening;-(5) formulati6n" 1f'a model for triaxial compression--.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
MUNCLASSIFiED/UNLIMITED 0 SAME AS RPT. C DTIC USERS UNCLASSIFIED ,"

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b F' ,TOWNE (Include Area Code) I 22c. OFFICE SYMBOL
Major Steven C. Boyce (202) 767-6963 AFOSR/NA

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



19. CQntinued

7of soils including the construction and analysis of the database; (6) development
of the theory and basis for defining Class I hardening in terms of triaxial com-
pression; -0) modeling Class 2 plastic hardening; 28) formulatiq6nj 6models for
one-dimensional strain in soils including 'th construction and analysis of the
databasea'(9) development of the theory and basis for defining Class 2 hardening
in terms of iD-strain; 10) development of objective elastic soil constitutive
equations which include 'tress history, particle deposition, fabric anisotropy, and
stress state; (11) develoment and numerou 'enhancements of a three-dimensional
elasto-plastic finite element soil analysis program based on the developed constitutive
equations; (12) low-stress dilation testing; (13) the effect of rigid boundaries on
the measurement of particle concentration; and (14) initiation of work aimed toward
the development of a computer simulation of the behavior of three-dimensional packings
of nonspherical particles.

/

:= .. . . " II I I | ml~ l i I lml ...



T I _I H R I M E I C

THREE-DIMENSIONAL ELASTO-PLASTIC

ANALYSIS FOR SOILS

By

Bobby 0. Hardin

and

George E. Blandford

Department of Civil Engineering
University of Kentucky

Lexington, KY 40506-0046

Accesion Fi_ _

NTIS CRA&I
OTIC rAe Ej

U;)j'roj ,.d Ek

" ,. \ ;
/ 'iC. ', .. .. ... . .

October 3,. ... .

October 3, 1988 .I



ThZE-DIMENIIAL EIASM1~-PLASTIC ANALYSIS FXIR SOU.S

TABLE OF CONTENTS

INTR DUC ION . . . . . . . . . . . . . . . . . . . . . . . . . . .

PROJECT OVERVIEW AND P JBLICATION SLARIES ... ....... 4
Soil Particle Crushing ....... ... ................... 4
Soil Strength in Terms of Effective Stress .... .......... 9
One-Dimensic-_a1 Strain in Sc yIs ............... ...... .. . 12
Application of Constitutive Models to Wheat .. ......... ... 13
Low Stress Dilation Test ....... .................. ... 14
Measurement of Particle Concentration .... ............ ... 17
Elasticity of Particulate Materials ...... ............. 18
Papers in Preparation ..... .................... ..... 19

THREE-DIMENSIONAL ELASTO-PLASTIC COHESIONLESS SOIL ANALYSIS . . . 21

SOIL ELASTICITY ........ ......................... . 23

SOIL PLASTICITY ......... . ........................ . 26
Strength Model .......................... 30
Class 1 Plastic Hardening and Softening . ........... 33

Class 2 Plastic Hardening ..... ................... 35
Class 1 and Class 2 Plastic Strain Computations ....... .. 35

FINITE ELEMIENT FORMULATION ....... .................... ... 41

NONLINEAR SOLUTION ALGORITHM ....... .................. . 44

CONSTI=' E EQUATION COMPUTrATIONAL DETAILS .. ........... .. 48

VERIFICATION OF NUMERICAL PROCED IRM S. .... ............... . 49

SUMMARY ............ ............................ . 59

RECOMMENDATIONS FOR FUTURE RESEARCH .... ............... .. 59

COMPUTIER SIMULATION OF PARTICLE BEHAVIOR ... ............. .. 60

REFERENCES .......... ............................ 61

APPENDIX I - FINITE ELEMENT FORMULATION DETAILS



In recent years, studies in soil dynamics have dealt extensively

with wave propagation in soils. Both laboratory and field wave veloci-

ties have been measured in an effort to determine the various

parameters that affect wave propagation. Wave propagation is an ex-

cellent technique for applying extremely small strains to soils and to

accurately measure the stress-strain response of the soils due to the

small strains. Such small strains are nearly elastic. Consequently,

studies of wave propagation in soil dynamics have contributed greatly to

the understanding of elastic s il behavior.

However, due to the use of limiting equilibrium analyses in soil

statics, studies in soil statics have tended to concentrate on the

strength of soils and on large strain behavior. Large strains involve

slippage, rearrangement, and crushing of particles. These are sources

of plastic strain. The studies of plastic strains in soil statics have

led to the use of work hardening plasticity theories in soil mechanics,

the development of critical state soil mechanics, and to the development

of stress-dilatancy theory (Drucker, et al. 1957; Rowe, 1962; and

Schofield and Wroth, 1968).

Hardin (1978) presented a state-of-the-art paper on the stress-

strain behavior of soils in which information on the elastic behavior of

soils from soil dynamics is synthesized with information on the

plastic behavior of soils from soil statics. Synthesizing these two

types of soil behavior provided a framework for the development of

comprehensive elasto-plastic stress-strain relationships for soils. The

stress-strain relations are formulated in terms of effective stress and

particulate mechanics is used as a guide for the development of

macroscopic constitutive equations. In particular, the Hertz and

Mindlin (1949) theories have to do with the elastic behavior of soils

and the stress-dilatancy theory is related to the plastic behavior of

soils (Rowe, 1971).

Many constitutive equations currently being proposed for soils

arise from studies in continuum mechanics. They are often carefully

constructed from the continuum mechanics point of view, but show little

regard for the constraints imposed by particulate mechanics, i.e. the
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kinematics of particle movement, particle crushing, and the bonding at

particle contacts. As a result, the physical meaning of the coeffi-

cients in the constitutive equations is often obscure, and a given Bet

of values for the coefficients is valid for a very restricted range of

loading.

To provide physically based elasto-plastic soil constitutive

equations, the U. S. Air Force Office of Scientific Research has

sponsored the research summarized in this report through its Project No.

AFOS-84-0195. The overall project objective is the development and

verification of three-dimensional elasto-plastic constitutive equations

for soils. Essential features of soil behavior that result from the

soil skeleton being particulate are included and the developed soil

model incorporates the oehavior characteristics indicated by particulate

mechanics theories. The construction of the elastic component of the

constitutive equations is influenced by the Hertz and Mindlin theories.

The plastic component is formulated using the stress-dilatancy theory

and includes the dependency of particulate materials on the effective

stress increment direction as well as state of effective stress. This

is accounted for by defining two plasticity models for two respective

classes of stress increment directions with different plastic potential

and hardening functions for each class.

Because the developed constitutive equations have been constructed

by synthesizing small strain data from soil dynamics with data for large

strains from soil statics (Hardin, 1978), a given set of coefficients is

valid for a wide range of loading conditions, from wave propagation

strain levels to loadings where the soil fails. The constitutive equa-

tions include such state and stress history parameters as void ratio and

overconsolidation ratio. Consequently, some of the effects of changes

in these parameters are accounted for directly and therefore do not

cause variations in the coefficients. Many of the coefficients are

nearly constant for a wide variety of soils and loading conditions, and

the effects of soil disturbance on some of the coefficients is beginning

to be understood.

This report focuses on the developed elasto-plastic constitutive

equations and their implementation into a three-dimensional finite

element code EPSAP (Elasto-Plastic Soil Analysis Program). The deve-
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loped constitutive equations are based on assu ing the soil to be a

continuum. This is necessary in order to obtain solutions to practical

geotechnical engineering problems. However, one should alays remember

that the soil is composed of discontinuous particles and the properties

of the coninuum should reflect the essential features of soil behavior

that result from the particulate nature of soils. Primary emphasis of

this project has been on the understanding and realistic modeling of the

constitutive behavior of soils. The finite element program has been

developed for use in the verification of the constitutive model; but can

also be used for the analysis of three-dimensional soil systems.

At the beginning of the project in 1984, the principal investi-

gators believed that the constitutive equations by Hardin (1978) could

be perfected and implemented into a three-dimensional finite element

analysis program in a relatively short time. It would then be possible

to solve boundary value problems corresponding to laboratory tests, e.g.

the vertical loading of model footings on sands. However, the ideas for

improvement of constitutive models that have been discovered during the

project were unforseen and the complexity of numerical implementation

was underestimated. Consequently, as the project concludes, the ana-

lysis program is just now ready for solution of problems involving

monotonic loading of cohesionless soils. The development of consti-

tutive equations for cohesive soils and cyclic loading has been advanced

but requires considerable additional effort. Thus, the verification of

constitutive equations has been by comparison to test results for

specimens subjected to homogenous states of stress and strain. Veri-

fication by finite element simulation of footing tests, etc., has not

been completed.

A complete set of constitutive equations and numerical procedure

for the monotonic load analysis of cohesionless soils are presented

herein and will be submitted for publication in the near future. Though

the focus is on the final stage of the supported research effort, some

of the other accomplishments previously reported are summarized. A

brief overview and summary of the published results for the project are

presented in the next section.
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IRJ]Vr OVERIMW AND I:BLICATIC SMARI

Three-dimensional elasto-plastic constitutive equations for soils

are comprised of the elemental parts listed in Table 1. Much of the

framework in Table I and preliminary definition of many of the elemental

parts was presented by Hardin (1978). Research completed under the

current contract has aimed primarily toward improved definition of the

plastic potential surfaces and work hardening and softening functions

for monotonic loading. An important development discovered during the

past year is the implicit definition of plastic potential surfaces.

Principal plastic strain increment ratio functions representing the

gradients of plastic potential functions are defined. This provides

flexibility in defining surface shapes that accurately model soil

behavior and simplifies numerical evaluation of the plastic strain

increments.

Details of accomplishments have been reported to AFOSR in project

reports and through copies of papers published or submitted for publi-

cation. The items studied are listed in Table 2 with references to

appropriate papers or reports containing results. A brief sumary of

each paper submitted for publication is included below in chronological

order.

Soil Particle Crushing (Hardin, 1985a). - The strength and stress-strain

behavior of an element of soil is affected greatly by the degree to

which particle crushing or particle breakage takes place during loading

and deformation. For the type of deformation that primarily produces

volume change, such as one-dimensional strain or isotropic compression

(Class 2 stress increments), particle crushing adds to the reduction in

volume. For the type of deformation where particles are moving past or

around one another, such as triaxial compression or simple shear (Class

1 stress increments), crushing at sliding contacts decreases the rate of

dilation corresponding to a given principal stress ratio.

In order to understand the physics of the strength and stress-

strain behavior of soils and to devise mathematical models that ade-

quately represent such behavior, it is important to define the degree to

which the particles of an element of soil are crushed. The amount of

particle crushing that occurs in an element of soil under stress depends
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Table 1.- ELEMENTAL PARTS OF
3D CONSTITUTIVE EQUATIONS
* ELASTIC COMPONENT (Hertzian)z

~. * PLASTIC COMPONENT
DEFINITION OF LOADING

------------------------------------ a-a--

Z For Monotonic Loading
Class 1 Class 2

WL PLASTIC POTENTIAL PLASTIC POTENTIAL
z SURFACE SURFACE

WORK HARDENING AND WORK HARDENING

SOFTENING FUNCTION FUNCTION
---- - ----

I-For Cyclic Loading
Class 1 Class 2

YIELD RATE PRECONSOUDATION
SURFACE SURFACE

V) MASING UNLOAD-RELOAD' SHAPE
Li-I ------------------------------ P
o KINEMATIC HARDENING KINEMATIC HARDENING

ANISOTROPY (PACKING AND STRESS)I-
C-) ROTATION OF STRESS INCREMENT

Vi-

..J • VISCOUS COMPONENT (Strain Rate Effects)

" II I i l ii I i l ll i l i l II iI" "5



Table 2 - Research Accomplishments

Constitutive Behavior

Task Papers, Reports and Comments

Soil Elasticity Hardin, B. 0. and Blandford, G. E. (1988a),
"Elasticity of Particulate Materials,"
submitted to Journal of Geotechnical
Engineering: draft submitt,'d to AFOSR.

Particle Crushing Hardin, B. 0. (1985), "Crushing of Soil
Particles," Journal of Geotechnical
Engineering, ASCE, Vol. 111, No. 10, pp.
1177-1192.

Strength of Soils Hardin, B. 0. (1985), "Strength of Soils in
Terms of Effective Stress," Proceedings of
the Richart Commemorative Lectures, ASCE,
Detroit, October, pp. 1-78.

Hardin, B. 0. (1988b), "The Low-Stress
Dilation Test," accepted for publication in
the Journal of Geotechnical Engint=ering,
ASCE: draft submitted to AFOSR.

Class 1 Plastic Potential "Class 1 Plastic Potential Function Formu-
Surface lation Appendix III, first annual report

to AFOSR, Sep. 26, 1985.

Class 2 Plastic Potential: Modification of
the Class I plastic Surface potential
function also applies to Class 2,because
the Class 1 function is a component of the
Class 2 function.

Class 1 Work Hardening "Modeling Work Softening Behavior for Class
and Softening Function I Plastic Hardening," Appendix II, second

annual report to AFOSR, Sep. 15, 1986.

Hardin (1988d), "Triaxial Compression for
Cohesionless Soils," to be submitted to
Journal of Geotechnical Engineering, ASCE.
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Table 2 - Research Accomplishments (continued)

Task Papers, Reports and Comments

Class I Work Hardening A database which contains several hundred
and Softening Function stress-strain curves from drained triaxial
(continued) compression tests has been completed.

Class 2 Work Hardening "Modeling Class 2 Plastic Hardening,"
Function Appendix TII, second annual report to AFOSR,

Sep. 15, 1986.

Hardin (1987), "ID Strain in Normally
Consolidated Cohesionless Soils," Journal
of Geotechnical Engineering, ASCE, Vol. 113,
No. 12, pp. 1449 - 1467.

Hardin (1988a), "ID Strain in Normally
Consolidated Cohesive Soils," Journal of
Geotechnical Engineering, ASCE, 39 pp., to
be published.

Application Hardin, et al. (1988), "Triaxial Compres-
sion, Simple Shear, and Strength of Wheat,
International Summer Meeting of the ASAE,
Rapid City, SD, June 26-28, 1988, Paper
#88-4022; in review for possible publica-
tion in the Transactions of the ASAE.

Finite Element Analysis

Task Papers, Reports and Comments

Matrix Formulation of "Matrix Formulation of Constitutive
Constitutive Equations Equations," section of first annual report

to AFOSR, Sep. 26, 1985, pp. 8-13.

3D Constitutive Equations Hardin and Blandford (1988b), "3D Consti-
tutive Equations for Cohesionless Soils,"
to be submitted to Journal of Geotechnical
Engineering, ASCE.

Implementation of Because the constitutive equations are
Constitutive Equations being developed and revised, the finite
into Finite Element Code element code must be continuously updated

to include newly developed models.
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Table 2 - Research Accomplishments (continued)

Task Papers, Reports and Comments

Development of Three- "Finite Element Formulation Details,"
Dimensional Element Appendix V, second annual report to AFOSR,
Library Sep. 15, 1986. (includes representation

of infinite boundaries); plus this report.

Investigation of Nonlinear "Nonlinear Solution Algorithm," section of
Solution Strategies second annual report to AFOSR, Sep. 15,

1986, pp. 16-22; and this report.

Finite Element rode A soil specimen subjected to homogeneous
Verification states of stress along a specified stress

path is represented using one modified
hexahedron finite element for the symmetric
one-eighth of the problem. The computed
stress-strain relation is compared to that
computed directly from the constitutive
equatiuns.

Some results of the finite element part of
this verification procedure are given in
"Verification Problems," section of second
annual report to AFOSR, Sep. 15, 1986,
pp. 22-27; and this report.

3D Elasto-Plastic Finite Blandford and Hardin (1988), "3D Elasto-
Element Analysis Plastic Finite Element Analysis of

Cohesionless Soils," to be submitted to
International Journal for Numerical and
Analytical Methods in Geomechanics.
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on particle size distribution, particle shape, effective stress state,

effective stress path, void ratio, particle hardness (i.e. hardness of

cementing material or weakest constituent of a particle and weakest

particles of an element), and the presence or absence of water.

Data for a large number of single mineral soils and rockfill-like

materials have been analyzed and equations developed that can be used to

estimate the total breakage expected for a given soil subjected to a

given loading. In doing this, new measures of particle breakage have

been defined, called breakage potential, total breakage, and relative

breakage, that integrate the changes in the particle size distribution

curve for all sizes greater than 0.074 mm. A methodology based on pro-

bability analysis for studying the breakage of particles of each size

within a distribution of sizes has been outlined. Continued development

of the probability model for particle crushing is currently supported by

the National Science Foundation.

Soil Strength in Terms of Effective Stress (Hardin, 1985b). - An under-

standing of the strength of soils is essential to the formulation of

general-purpose constitutive models for soils. Failure is a limiting

case and should be defined first, so that the form of equations adopted

for various elements of the constitutive model (the Class 1 hardening

function in particular) will behave properly as limiting conditions are

approached. The Mohr-Coulomb failure theory is used by most geotechical

engineers to model the strength of soils. However, a more fundamental

approach that considers the particulate nature of soils has been pur-

sued.

Factors that determine soil strength (e.g. confinement, density,

particle size distribution, mineral friction, aging, particle crushing,

etc.) produce their effect through their influence on two fundamental

mechanisms of resistance to deformation in particulate materials. These

two fundamental mechanisms are

* bonding at particle contacts, and

* the kinematics of particle movement within an
element of deforming soil.

9



The first of these fundamental mechanisms is physio-chemical in nature

and the second is geometric. Inclusion of these two basic mechanisms

must be considered in determining the appropriate soil strength model.

Figure 1 illustrates the developed strength model. The two parameters

that represent the two basic mechanisms of soil strength are the bonding

obliquity angle 0o and the maximum rate of dilation dmax . Variation

of these parameters with minor principal stress a; is illustrated in

Figs. 1(b) and 1(c) and the resulting strength envelope is shown on the

Mohr diagram in Fig. 1(a). The maximum rate of dilation curve is de-

fined directly from the results of strength tests (normally triaxial

compression); whereas the strength model must be used to determine the

bonding obliquity angle from the same tests. Curvature of the strength

envelope in Fig. 1(a) results from variation with stress of the two

fundamental parameters 46 and dma .

The bonding obliquity angle is equal to the mineral friction angle

for cohesionless soils, but includes cohesive and frictional bonding for

cohesive materials. A method for isolating the magnitudes of cohesive

and frictional bonding in cohesive materials is proposed. Analysis of

triaxial compression test results for stabilized sands shows that the

dimensionless contact cohesion parameter is a measure of the strength of

cementation bonding.

The model is generalized with respect to stress path through the

dilatancy factor and the interpolation function F(b) (refer to the paper

for precise definition of these terms). The dilatancy factor ties

together the values of maximum rate of dilation for different stress

paths. Experiments indicate that the dilatancy factor is independent of

stress path for a given material at a given density. The interpolation

function accounts for the effect of stress path on energy transmission

and dissipation at the peak principal stress ratio. The interpolation

function F(b) may be chosen to give identical or differing strengths in

triaxial compression and extension. It can also be chosen so that the

value of b = (a - oa)/(a; - a') for plane strain matches test results.

Model calibration has been performed using the results of over 700

triaxial compression tests, most on cohesionless materials. The

analyzed database includes silts, uniform and well graded sands, and

rockfill-like materials with maximum particle sizes up to 200 mm, as

10
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well as normally and heavily overconsolidated clays and stabilized

sands. Cohesionless materials range in hardness from chlorite and

calcite to aluminum oxide, with particle shapes from round to angular.

The minor principal stress varies from 0.01 to 677 atmospheres, with an

overall void ratio range from 0.17 to 1.28.

An example is presented in the paper showing how the model may be

used to estimate the strength of materials that cannot be tested. Thus,

the model may prove useful to engineers involved in the design of large

earth and rockfill structures.

One-Dimensional Strain in Soils (Hardin, 1987; 1988a). - The first paper

compares a stress-strain model for one-dimensional strain in normally

consolidated cohesionless soils to test results covering the stress

range 0 to 1300 atmospheres. This model is called the "1/e vs. uP
v

model" because the implied relationship between void ratio e and

vertical effective stress a' is linear in the low-stress range. The
v

relationship between l/e and p is nonlinear at higher stresses where

the effect of particle crushing becomes significant. Effects of initial

void ratio, relative density, particle shape, particle size

distribution, and particle material on 1D-strain behavior have been

examined in the framework of the model. The model can accurately repre-

sent 1D-strain in rockfill-like materials as well as sands and gravels.

The data and equations presented provide a means of estimating shrinkage

during placement of rockfills and estimating settlement of structures on

rockfills where it is not practical to conduct ID-strain tests or pene-

tration tests.

The second paper compares a stress-strain model for one-dimensional

strain in normally consolidated cohesive soils to test results covering

the stress range 0 to 950 atmospheres. For cohesive soils the 1/e vs.

a'P relationship is linear in the normally consolidated range. Thev

slope of the linear relationship is nearly independent of soil

disturbance and its variation is relatively small for a wide variety of

soils with different compressibilities. Because of this the effects of

aging and soil disturbance are isolated to a single model parameter,

provi6ing a quantative measure of these effects. The liquid limit is

easily related to the model because the p' 0 state is included. These

v
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features provide for better interpretation of test results. An

undisturbed sample can be tested as usual and then remolded to a water

content slightly above the liquid limit. The liquid limit should be

measured as water is added and the soil remolded. The final remolded

sample should then be subjected to a ID strain test. Results for both

undisturbed and remolded samples define the model slope and the liquid

limit and remolded test results are beneficial in choosing the best

value of p. By following this procedure all three tests are conduct;e

on identical material.

The one-dimensional strain models for normally consolidated soils

are used to define Class 2 plastic hardening for monotonic loading (see

Table 1). In order to define Class 2 plastic hardening for cyclic

loading the unload-reload shape for ID-strain must be modeled. This

introduces additional complexity because the 1/e vs. u'P relationshipv
for unload-reload is nonlinear, the shape of the unload-reload curve

depends on stress history as represented by the preconsolidation stress,

and the preconsolidation stress is just one point on a preconsolidation

surface when we generalize to three-dimensions.

Application of Constitutive Models to Wheat (Hardin, et al., 1988). -

Some aspects of constitutive behavior are common to all particulate

materials, e.g. the importance of bonding at particle contacts and the

dilatancy of dense particulate materials. Thus, constitutive equations

developed for cohesionless soils can often be applied to wheat with

relatively little modifications provided the material constants are

measured for wheat.

Hardin, et al. (1988) utilize models developed for soils to define

the constitutive behavior of bulk wheat. Two models define three-

dimensional behavior: a model for wheat elasticity (small-strain

behavior) and a model for the strength of wheat. An elasto-plastic

model for the behavior of wheat in triaxial compression is presented.

The model includes the volume change behavior during triaxial

compression and is in that sense three-dimensional. Simple shear and

triaxial compression behaviors are compared by normalizing the two

moduli versus strain relationships.

13



Low Stress Dilation Testing (Hardin, 1988b; to be published). - The low-

stress dilation test is a new test; used in conjunction with other tests

to define the peak strength of a particulate material. It provides a

measure of kinematics of particle movement within a deforming element of

particles making its results fundamental to the definition of soil

strength and to the modeling of triaxial compression in soil. The low-

stress dilation test relates to the geometric component of soil

strength.

The objective of the test is to measure the rate of dilation in a

particulate specimen deforming with minor principal stress o = 0.

Initially, the test was referred to as an "unconfined" dilation test.

However, in order to maintain necessary contact between specimen and

apparatus the value of a3 must be somewhat greater than zero; leading to

the name "low-stress" dilation test.

Dilation refers to the volume changes that occur during deformation

of a particulate material. The relationship between volumetric and

major principal strains during triaxial compression or plane strain

loading is illustrated schematically in Fig. 2. Rate of dilation d, as

measured by the test, is the rate at which volumetric strain v changes

with major principal strain E1 (d z -dv/dc1 ). The rate of dilation in

Fig. 2 changes continuously with increasing C1, first increasing to the

maximum value dmax , then decreasing to zero as the strain becomes very

large.

Maximum rate of dilation increases with decreasing confinement.

The maximm' value of d at '= 0 is denoted d (Fig. 2). The low-

stress dilation test has been conceived as a simple means of measuring

do
00

Parameter d Oais one of the coefficients in a strength model pro-

posed by Hardin (1985b). The nature of the model is illustrated in Fig.

3 where it is applied to peak strength of a cohesionless rockfill-like

material measured by four drained triaxial compression tests. Two model

parameters represent the two basic mechanisms of soil strength. They

are the bonding obliquity angle *, which for cohesionless soils is
equal to the mineral friction angle * (Fig. 3b), and the maximum rate

of dilation dima x (Fig. 3). Both 0 andd m vary with a; as shown in

Fig. 3, with maximum values occuring at o 0 ( 39.8 and d

14
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0.71, respectively). The curved Mohr envelope defined by the and

dma x variations is compared to the measured Mohr circles in Fig. 3(a).

Derivation of the strength model and discussion of its application to

cohesive soils can be found in Hardin (1985b).

The test apparatus described in this paper is relatively swall in

size, designed to test sands. However, an important feature of the low-

stress dilation test is its potential for testing rockfill-like materi-

als. It should be relatively easy (compared to large-scale triaxial

compression testing) to construct a low-stress dilation apparatus that

could test 1 to 2 m3 specimens.

This paper includes discussion of the strength model, description

of the test apparatus and procedure, and a theoretical analysis and test

results for a packing of brass rods. Data for Ottawa sand, crushed

quartz sand, and a graded sand are analyzed to develop a model for the

effect of initial void ratio on low-stress dilation behavior of cohe-

sionless materials; and critical state behavior is discussed. Test

results showing the effect of fabric anisotropy on dilation behavior are

presented and a test on sand-cement indicates the role of contact cohe-

sion in the physics of soil strength.

Measurement of Particle Concentration (Hardin, 1988c; in review). -

Particle concentration is a physical property of particulate materials

that has great influence on their mechanical behavior. Void ratio or

porosity are the parameters most often used to quantify particle

concentration. The determination of void ratio or porosity of a soil

sample is part of the procedure for many ASTM standards.

Soil samples are often formed by placement in a mold with rigid

boundaries, followed by striking off a plane surface with a rigid

straightedge. Such rigid boundaries and plane surfaces interrupt the

packing of particles. When the volume of the sample is computed from

the volume of the rigid mold and plane surfaces, additional void space

at the boundaries that is not representative of the void ratio or poro-

sity of a repeating element of the packing is included in the volume.

The computed void ratio or porosity are too large and the error increa-

ses with decreasing sample size.

This paper describes the results of theoretical and experimental
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studies of the effect of rigid boundaries on void ratio or porosity

measurement. An equation is presented that relates the true void ratio

to measured void ratio, accounting for mold size and shape, and particle

size distribution. The relationship is shown to be nearly independent

of particle shape and true density.

Elasticity of Particulate Materials (Hardin and Blandford, 1988a; in

review). - A major difficulty in formulating elastic constitutive equa-

tions for materials composed of discrete solid particles is that the

streps-strain behavior is rarely exclusively elastic. Deformation of a

particulate material almost always involves slippage at contacts between

particles as well as elastic deformation of individual particles. Elas-

tic deformation is relatively small and is often obscured by plastic

deformation resulting from slippage, rearrangement and crushing of

particles. The problem is to isolate, measure and model the elastic

behavior of particulate materials in the presence of pervasive yielding.

The elastic behavior of classical elasto-plastic materials is iso-

lated by unloading; stress paths inside the yield surface are assumed to

produce elastic strains. But particulate materials yield during un-

loading; consequently, exclusively elastic behavior is restricted to

infinitesimal increments of unloading. Therefore, differential elastic

constitutive equations for particulate materials are formulated using

measurements of elastic stiffness for specimens subjected to a variety

of ambient states of stress.

Previously, Hardin (1978) developed three-dimensional elastic dif-

ferential constitutive equations for soils. However, these equations

(including modifications by Hardin 1980) were not formulated to assure

objectivity. The primary purpose of the reformulation presented in the

paper is to satisfy objectivity. Another purpose is to incorporate the

discovery by Roesler (1979) that elastic shear stiffness is independent

of the stress normal to the plane of shear.

There are at least two important uses for the proposed elastic

constitutive equations. They may be used to define the elastic strain

increment for incremental elasto-plastic analysis; accurate definition

of elastic strains is important since they are necessary for inverting

the elasto-plastic stress-strain relations. Secondly, the equations

18



provide a three-dimensional framework for defining the effects of state

of stress and soil density on wave propagation velocities. The equa-

tions for various elastic moduli (shear modulus, constrained modulus,

etc.) are all defined by the three-dimensional equations.

Papers in Preparation - Three papers are currently being pursued for

possible publication. The three papers are tentatively titled: "Tri-

axial Compression for Cohesionless Soils" by Hardin (1988d), "3D

Constitutive Equations for Cohesionless Soils" by Hardin and Blandford

(1988b), and " 3D Elasto-Plastic Finite Element Analysis for Cohesion-

less Soils" by Blandford and Hardin (1988). A brief description of each

of these three papers is presented in the paragraphs below. Upon

completion of the papers, copies will be sent to the AFtSR.

Triaxial compression for cohesionless soils (Hardin, 1988d)

presents~he formulation and verification of a model for the stress-

strain behavior of cohesionless soils in triaxial compression. The

model includes work softening and accurately represents the volumetric

strain behavior. Results of hundreds of drained triaxial compression

tests with volume change measurements available in the literature have

been incorporated into a computerized database. These test results have

been used to formulate the model. The developed 3D constitutive equa-

tions use the triaxial compression model to define the Class 1 hardening

function.

Use of a triaxial compression model to simulate results for six

tests on a crushed calcite sand is illustrated in Fig. 4. The six

samples range from loose to dense with initial relative densities D ri

0.21 to 0.72, initial void ratios ei = 0.661 to 1.027 and a./pa = 2.04

for all tests. The measured variations of principal stress ratio and

volumetric strain with axial strain are shown in Figs. 4a and 4b and the

corresponding curves computed from the model are given in Figs. 4c and

4d.

The paper "3D Constitutive Equations for Cohesionless Soils" by

Hardin and Blandford (1988b) presents the mathematical formulation of a

complete model for monotonic loading of cohesionless soils. The obje.-

tive is to present a complete constitutive equation algorithm that can

be incorporated into finite element analysis programs with minimum
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effort. The paper includes many of the equations presented in the "Soil

Elasticity" and "Soil Plasticity" sections of this report. However, the

equations are arranged in the order and format necessary for computa-

tion.

Blandford and Hardin (1988) present a three-dimensional finite

element implementation for the constitutive equations of Hardin and

Blanwford (1988a, b). Included in this effort is an initial stress

solution algorithm for solving the nonlinear algebraic equations based

on a second-order predictor-corrector scheme. Computational details

associated with caluulating the void ratio, load step scaling at the

break point between pre-peak and post-peak (work softening behavior)

Class I behavior and the variable load path algorithm are presented.

Sample ex-perimental problems are simulated demonstrating the correctness

of the finite element implementation and the results for a plane strain

footing problem (boundary value problem) are also presented.

THREE-DIENSIONAL mASTO-PASTIC COMIONLESS SIL ANALYSIS

This portion of the report presents the current elasto-plastic

constitutive equations and their implementation into a three-dimensional

finite element code EPSAP (Elasto-Plastic Soil Analysis Program). The

elasto-plastic constitutive equations are being investigated for

publication (Hardin, 1988d; Hardin and Blandford, 1988b and Blandford

and Hardin, 1988). However, the equations have been sufficiently

developed to pursue their implementation into EPSAP as well as perform

some numerical experiments.

EPSAP has been developed to solve three-dimensional cohesionless

soil problems based on natural (true) stress-strain elastic and plastic

constitutive equations presented in Hardin and Blandford (1988a,b).

EPSAP includes a linear linp element (Fig. 5a) to model line traction

loads, a four node quadrilateral surface traction load element (Fig.

5b), the modified eight node hexahedron volume element of Wilson et al.

(1973) including the patch test modifications of Taylor et al. (1976)

(Fig. 5c) and an infinite element from Marques and Owen (1984) which is

based on the mapping technique of Zienkiewicz et al. (1981, 1983) (Fig.

5d). Solution of the incremental elasto-plastic finite element

equations is based on an initial stress formulation which utilizes a
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predictor-midpoint iterative corrector scheme to satisfy equilibrium. A

natural (true) stress and strain finite element representation is

obtained by updating the nodal coordinates during the analysis (Hsu,

1986). These items are discussed in the following sections along with

some of the details for implementing the elastic and plastic constitu-

tive models and the presentation of some standard numerical piocedure

verification problems.

SOIL ELASTICITY

Hardin and Blandford (1988a) concluded that elasticity modeling for

particulate materials needs to include: (1) geometry of the assemblage

(fabric); (2) elastic properties of individual particles; (3) stress

history; and (4) current state of stress. These effects were included

in the developed constitutive equations by a scaler function and three

matrices representing different parts of the constitutive behavior for

cohesionless soils, i.e.

{d~e } = - , [S ] [Sf I[S I {da'}
1-n V f1  apa

= IS] (da') (1)

where F(e) = 0.3 + 0.7e2 approximates the effect of void ratio e which

changes with subsequent stress history; pa is atmospheric pressure; n is

a power stress coefficient; {dce} = Ldc e dey dce dye dy e dy e IT is thex y z Y YZ zx T
incremental elastic strain vector; (da') Lda' do doz' dr dr dT ]

x y xy yz zx
is the effective incremental stress vector; [S I is the isotropic

elastic Poisson ratio matrix (Table 3); [Sf1 is the reference soil

fabric matrix (Table 4) which is defined to account for fabric geometry,

elastic particle properties, and stress history prior to measurement of
refeencefabric; r ] ]-1

reference [R I [E [R is the transformed stress-
compliance matrix (Table 5) which is used to model the effect of state

of stress on the constitutive coefficients including changes in soil

fabric that result from stress history following the measurement of

reference fabric (i.e. stress history effects not accounted for by

F(e)); [S] is the nonlinear elastic material compliance matrix; (
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Table 3. Isotropic Elastic Poisson Ratio Matrix (S ]

-V 11 -v --

-v 1 --

IS = -V --v 1

2(1+v)
2(1+v)

Table 4. Reference Soil Fabric Matrix [S ]

(x,y,z - Principal Fabric Directions)

1
s

x 1

9y 
1

Y I[Sf]~ w= z

YZ 1
1

1
In

a1 1.a 3 rniplSrses

2  1
pnn

aI a

11

(IIo)n/2

2 1

1

(O{j)/2 /
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Table 5. Continued

[R]
2 2 2

1I 1 2 1 mi 2mlnl 2nl l

IL 2 m n 2 m 2 2n2 L

2 2 21 2 n2 2Am ~ "2 n2n
3  3 2 3m3  

2 3n3 33

21 2 2mlm 2 2nln 2 2(Llm2+2m1) 2(mln 2+m2 n1 ) 2(n 12+n 2Y1

2i2t3 2m2m3 2n2n3 2(2m3+'3m 2) 2(m2n3+m3n2) 2(n213+n3A 2 )

23 1J 1 2m3m I 2n3nI 2(I3m1+ 1 3) 2(m3n1+mln3) 2(n3I1+n1i3)

[R I = [R] (I]
[]-1 [RT^

[RI = [I]

[R I [I] [R]

-1 T[RI [I) [R]

I diag 1 1 1

I  mi , ni - principal stress direction cosines
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symbolize column vector; L J represent row vector; [ ] is used to

designate a matrix; and superscript T denotes matrix transpose. Stress

invariants (Table 6) have been used in formulating the stress-compliance

matrix, in order to make the resulting strain-stress relation

independent of coordinate transformation (objective).

SOIL PLASTICITY

There are important differences between classical plasticity and

soil plasticity. In classical plasticity the direction of the plastic

strain increment vector is assumed to depend on the state of stress but

is considered independent of the stress increment vector direction.

This is not the case for soils, as can be illustrated by considering the

strain increments resulting from triaxial compression (TC) and isotropic

compression (IC) stress increments. Figure 6(a) shows these two princi-

pal stress increments added to an initial isotropic state of stress.

Figure 6(b) shows the resulting principal strain increments. The two

strain increment vectors do not coincide. Hence the direction of the

strain increment vector is not uniquely determined by the state of ef-

fective stress. This peculiar behavior of soils arises due to the

particulate composition of soil materials. Soil stress-strain behavior

is controlled to a great extent by the kinematics of particle movement.

Hardin (1978) shows that the elements required to define soil

plasticity are

* a definition of loading,

* plastic potential functions for the different classes of
loading, and

* hardening functions for the classes of loading.

The definition of loading is used to specify different classes of load-

ing for different stress increment vector directions, and to specify

whether a given stress increment constitutes loading or unloading.

Hence, the definition of loading and plastic potential functions define

those aspects of the model that are usually defined by the yield func-

tion in classical plasticity.

Hardin (1978) concluded that the behavior of soils can be repre-

sented, with sufficient accuracy for most purposes, by considering only
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Table 6. Stress Invariants

I a' + a' + u'

a [(a - a') + (a' -z) + (a 2 -
2 z

2 2 2
xy yz zx

3: (ax - a;) (a' - a') (a' - a;) + 2 'r "
3~~ in z inYZZ

-(' - a')"'T - (a' - ,

- ( x- a 2 , z xy

' I1/3
o! 1 1 12

If +  1 ( 8 )  J 12 ; i = 1, 2, 3

1=-3 sin e + 3 cos e

02 = - 213 sin e

3 = J3 sin e - 3 cos 9

sin 3e = 3/2
2 J3/2

2

-n/6 1 e K w/6
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two fundamental classes of loading. These two classes are called Class

1 and Class 2 loadings. The deviatoric component of stress has the

major influence on the deformation resulting from Class I loading,

whereas the isotropic component of stress is more significant for Class

2 loading. A stress increment may be exclusively Class 1 or Class 2, or

it may involve a combination of the two. Separation of the two classes

of behavior is based on particle kinematics (not strictly deviatoric

versus isotropic components). Class 1 stress increments produce the

type of particle kinematics to which stress-dilatancy is applicable.

Stress-dilatancy theory is used to define the Class 1 plastic potential

function. Stress-dilatancy theory is not directly applicable to Class 2

loadings. Consequently, two plastic potential functions and two har-

dening functions, corresponding to the two classes of loading, are

needed to define the plastic strains in soils.

The plastic strain increments, deP ., for each class of loading can

be represented as

(dCP)k h k (2)

h andh
where dla dh are the incremental hardening functions for Class 11 2and Class 2 loadings, respectively; g 1 ' g 2 represent the Class 1 and

Class 2 plastic potential functions (e.g. Fig. 7); and a!. are the
IJ

effective stress components. The total plastic strain increment is

defined as

dcP = (1 - P) (dPJ.) + -F (dP.) (3)

The values of 4) (which represents the level of class participation) are

given in Fig. 8 for different stress increment paths from the state of

effective stress defined by point A. Figure 8 constitutes the loading

definition.

A simplified explanation of the difference between the behaviors

for Class 1 and Class 2 stress increments is that Class 1 stress

increments (e.g. triaxial compression, plane strain compression and

simple shear) approach the strength envelope (failure); whereas, Class 2
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loading stress increments (e.g. one-dimensional strain and isotropic

compression) are concave toward the stress axis and exhibit stiffer

behavior with increasing load. This is reflected in the different

shapes of the hardening functions for Class 1 and Class 2 loadings as

shown in Fig. 9.

Strength Model - An understanding of the strength of soils is essential

to the formulation of general-purpose constitutive models for soils.

Failure is a limiting case and should be defined first, so that the form

of equations adopted for various elements of the constitutive model (the

Class 1 hardening function in particular) will behave properly as limit-

ing conditions are approached. The Mohr-Coulomb failure theory is used

by most geotechical engineers to model the strength of soils. However,

a more fundamental approach that considers the particulate nature of

soils has been developed by Hardin (1985b) and will be used to represent

cohesionless soil strength.

There are two fundamental mechanisms that govern the deformation of

particulate materials: (1) bonding at particle contacts; and (2) the

kinematics of particle movement within an element of deforming soil. In

formulating constitutive equations for soils, the two parameters that

represent the two basic particulate mechanisms are: (1) the bonding

obliquity angle 00; and (2) the maximum rate of dilation d Max . Soil

strength in terms of effective stress has been defined by Hardin (1985b)

using these two parameters. The strength for cohesionless soils in

triaxial compression is defined by

Triaxial Compression (TC)

d 2d
d maxTC _ oa n (4a'~ '- (4a)

1+7a3 03 +d

Icy a rd 03

tan o= tan r + ,(4b)LO woao a 3

.o 3
II~~~~ I --..
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sino =-k )tan*

+( -kf) sin - (4c) J

1 + sin@
Kmin 1 - sin (4d)

1 + sin cv(vrc =1-s cv (4e)
RVI 1- sin4

RmaxTC = Rcv + (2 K.min - RevrC dnmxTC (4f)

whered 0is the value of : at 0; d is a parameter related to0her do ste0deo mx C a 3 n

the maximum negative rate of dilation; o' is the dilation reference

stress; of is the reference stress that defines the rate at which 0
decreases with increasing a; (- 10 pa); 0 is the mineral friction angle
which equals the bonding obliquity angle for cohesionless soil; 4P is

jjOQ

the value of 4t for & = 0; Ocv is the critical state angle of shearing

resistance; r is a parameter which defines the effect of confinement on

4; kf is the critical state strength coefficient (- 0.60); Kmin is the

minimum energy transmission ratio; RvTC is the critical state principal

stress ratio for triaxial compression loading; and RmaxTC is the maximum

principal stress ratio for triaxial compression loading.

For an arbritrary computation stress path, the strength equations

include (Hardin, 1985b):

Computation Path (CP)

b 1(1 -43tan e) (5a)
1

I + log(R 1T(1 + d T) (5b)

F(b) = 4e '(1 -be) (5c)

Rmax = RMaXTC + 2(RcvTC - K min ) F(b) dMaXTC  (Sd)

where b is a parameter which defines the intermediate principal stress;

mo is a power coefficient for the interpolation function F(b); e is the

polar principal stress invariant (see Table 6); and R is the maximum
max
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principal stress ratio. Equations 5 have generalized Eqs. 4 with

respect to stress path through the interpolation function F(b). The

interpolation function accounts for the effect of stress path on energy

transmission and dissipation at the peak principal stress ratio. F(b)

gives identical strengths in triaxial compression (b=O) and extension

(b=l). It has also been chosen so that the value of b = (o2 - -

a;) for plane strain matches test results.

Class I Hardening and Softening - A Class 1 hardening/softening func-

tion defines the relationship between two scaler quantities representing

3D states of stress and plastic strain, respectively. The principal

stress ratio R (:a/c3) has been used by Hardin and Blandford (1988b) to

represent state of stress and Class I plastic work Wp. represents the

state of plastic strain. Development of the hardening/softening

function for general Class 1 loading requires that a relationship

between R and WP that is independent of Class I stress paths be
1

formulated.

Relationships between the normalized triaxial compression stress

ratio rT and the normalized triaxial compression plastic work are
IC

pre-peak behavior:

1 = - (1 -(6a)

post-peak behavior:

It 1+ai- TIL U (6b)

where

rT= RMaT - 1

ma(6c)

r - (6d)rcvrC Rmax~r - 1 6d

in which c, 1, aTc and muT are pre-peak and post-peak shape parameters.

The normalized stress ratio and plastic work represent a relationship

which is invariant for Class 1 stress paths (Hardin and Blandford,
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1988b).

The normalized stress ratio, r, and normalized plastic work, WP

for an arbitrary Class I stress path are defined as (Hardin and

Blandford, 1988b)

- R- 1
r = (7a)

R -Imax

P f a Wpi(7b)

where

Rmax =RmaxT + Rmax - R ]maxTC [1 - F(r)]

F(r) 4rn (1 - n)

log (0.5)

log RmaTC I)

in which f is a constant and XI depends on d max'M and the initial void

ratio eo0. Equation 7a is iteratively evaluated until r converges and

IM is initially set equal to R calculated in the strengthmax a

alogorithm (Eqs. 4 and 5).

Since the relationship between r and W is unique (i.e. independent

of the Class 1 stress path), the following relationships hold (Hardin

and Blandford, 1988b)

rTC = r (8a)

S(8b)

Equations 6-8 are used to express invariant plastic stiffness rela-

tionships in terms of triaxial compression relationships. Based on the

triaxial compression developments, EPSAP simply calculates r and wP
1

K values to be used for calculating the Class 1 plastic work in Eq.

7b. The plastic work of Eq. 7b is used to calcuate the incremental

plastic work which is used to calculate plastic strains for arbritrary
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Class 1 stress paths as discussed following the next section.

Class 2 lardening - The Class 2 hardening function also defines the

relationship between two scaler quantities representing 3D states of

stress and plastic strain, respectively. Normalized mean principal

stress is used to represent the state of stress and the Class 2

normalized plastic work W represents the state of plastic strain. A

preliminary relationship between ;' and wP that is independent of stressM 2
path for Class 2 loadings in terms of one-dimensional strain (see Tables

7, 8 and 9 for the one-dimensional strain model) is (Hardin and

Blandford, 1988b are developing an analytic represenation which will be

similar to the Class 1 stress path invariant relationship)

W) W) (9a)

(WP) - i (9b)
2 CP 1

Normalized Class 2 plastic work WP is defined as follows

- (R~ -R)[ P]X
wp- [max (10)
2 (R mx- 1) P

where X is a constant and ' -'/pa. Based on the developed one-2 m ma
dimensional strain relationships, EPSAP simply reads in a table of a'

and W values which are calculated based on the algorithms given in

Tables 7 - 9. Cubic spliae interpolation based on the (a') is used to
m Cl'

calculate the normalize class 2 plastic work. The class 2 plastic
work, WP , is calculated from Eq. 10 which is used to calculate the

2'
increment in plastic work. Calculation of the Class 1 and Class 2

plastic strain increments depends on the incremental Class 1 and Class 2

plastic work and the gradients of the plastic potential surface.

Details of these calculations are provided in the following section for

arbritrary stress paths.

Class 1 and Class 2 Plastic Strain Cuputations - Equation 2 shows that
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Table 7. Algorithm for ID-Strain Total Work Potential
(notation is defined in Table 9)

Given: eo , p, S 1 , slD i n , o , o , m1D, Pa' and (ailD

Compute: WiD ID-strain total work potential at

Step

1. c,* 
2

2. SD S for (01)iD *

S-S + 1Emax SIDmin for (a') > 0*
ID - SIm'in e+ 2  ,() r DD

a 1ol D 

4

°CR

3. e1D +

eo SID Pa

4. dS1D 0 for (i)iD o

d~ir'1D 11

[ e2 (a' - m D -

dS -m e2(Si -S

d~i1D 1D0ICR Mi

for ( 1)ID > 
*

e2 -p(') dSelD 1D [ _p )ID 1D

iD Pa ID SI D2idllD

Note: The constrained modulus M - 01D
3ID
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Table 8. Algorithm for ID-Strain Elastic Work Potential and Plastic
Principal Strain Increment Ratios (notation is defined in
Table 9)

Given: v, n, SI, S2, S3j K, pa' (av)lD' and elD and wiD(Table 7)

where the iD-strain test principal stress axes coincide with
reference fabric principal axes for the soil, [S S [Z],
Sx = S , Sy = S 2' Sz = S3; and K°  i a

Cmpute D= iD-strain elastic work potential at (a')iD; and

(dP/dcP)lD, i = 2, 3, ID-strain plastic principal
1 1strain increment ratios

Step

1. c - K + I3

1 0 12 3JK1-n  K1-n

KiK
00

K1-n K1-n

3. c 0 i
S 3 1 S 2

4. c* c c! + K° (c + c5)

, 1-n

5. kD (0.3 + 0.7 eD 

6. wD = c* kD

fde! c* klD
7. . 1 , i 1,2,3

dcj J 1D OID

dEe 11
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Table 9. Algorithm for ID-Strain Normalized Stress and Plastic Work

Given: (oj)IDJ Ko' X2 ' 1D and e as functions of a! from Tables 7

and 8; and p

Comqpute: alD: normalized stress; and WD normalized plastic work

Step

1. aID (Omi)D 3 Pa o(1+2K

2 . Compute R mx for a = Ko(a) 1ID using the Eq. 4f

1D JO 1D ID
R 11 1

3.WID : RaT 1o(ID)~l~a

Notation for Tables 7 - 9

(a llD = major principal stress for 1D-strain loading;

V = elastic Poisson ratio;

S. = principal direction elastic stiffness coefficients (i:1,2,3);1

n = stress power coefficient;

p = void ratio/total work potential power coefficient;

SIDmax = maximum dimensionless stiffness coefficient for iD-strain;

S Mmi n = minimum dimensionless stiffness coefficient for iD-strain;

= crushing mechanism break point stress;

= crushing mechanism reference stress;

miD = power coefficient used to calculate the dimensionless 1D-

strain stiffness;

S1D = dimensionless 1D-strain stiffness;

e = zero principal stress void ratio;

e 1D = iD-strain void ratio;

K 0 lateral effective stress coefficient for 1D-strain; ando

x2 = Class 2 plastic work power coefficient.
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the Class I and Class 2 plastic strain increments can be evaluated i n

terms of the derivatives of the plastic potential functions with respect

to the effective stresses. However, it is not necessary to explicitly

define the plastic potential functions in terms of the effective stress-

es and then differentiate. Rather, you can work directly in terms of

the gradients of the plastic potential functions and express the plastic

strain increments as (Hardin and Blandford, 1988b)

k k {g'k

where

ky x y y Jk

in which (g')k is the vector of plastic potential function gradients

represented in Eq. 2.

The plastic potential function gradients are a function of the

principal plastic strain ratios (Hardin and Blandford, 1988b). Conse-

quently, the first step in computing the gradient functions is to calcu-

late the normalized principal plastic strain ratios. Class 1 normalized

principal plastic strain ratios ((g!) (dcP/dp) i 1,2,3)

evaluated as

(gl)1 1 (12a)

-R' + ( 1 + D C2  (12b)
2 + 2

1 '31 D
(g;)l = - 2 (1 + 3b 3 (12c)

where

log D

log (b)
ps

log (1/3)

Slog (bP)
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1

bP  (0 .5 )m+ 0.5 (1 - r)
PS

The parater D represents the stress-dilatancy behavior of cohesionless

soils and is expressed as (Hardin and Blandford, 1988b)

prepeak: D = (1 + d.,T) R Cv, 1 - R (13a)
max max max

postpeak: DmaxTC R -Re- J (13b)

Note that the maximum rate of dilation occurs at the peak. Parameter

C V1is used to define a parabolic pre-peak stress-dilatancy relationship

and bp is the value of b for plane plastic strain.
PS
The Class 2 normalized principal plastic strain ratios are (Hardin

and Blandford, 1988b)

1 (14a)

S  + 1 e ; i=2,3 (14b)1 i2 1g~ 1 -REP1

where

log 2 1 + D

2 +D

ni log (K0) i=,3

K is the lateral effective stress coefficient for one-dimensional

strain (ID); and (dcP/dcl) are the one-dimensional strain principal

plastic strain increment ratios as given in Table 8 for i = 2, 3.

The plastic potential function gradients of Eq. 11 are calculated

in terms of the principal normalized strain ratios as

{'k = [R ]-I i'}k (15)
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where

o o T

and [R,]- ' is given in Table 5.
With the plastic strain ratios computed from Eq. 15, the plastic

strain increments are calculated from Eq. 11 where

h dwP

fh (16a)Ck S rk

Srk = Lol '{gJk (16b)

t'r z =zx JT (16c)

and signfies that the quantity is evaluated as the midpoint of the

increment. The plastic strain increments computed from Eq. 11 are used

in Eq. 3 to calculate the total plastic strain increment.

FINITE ELEMENT FCF1JIATION

Finite element stiffness analyses are based on generating element

force-displacement equations and then assembling the element equations

to represent the soil medium equilibrium equations. Equilibrium equa-

tions for nonlinear problems are typically stated in incremental form.

Generation of the incremental finite element stiffness equations re-

quires proper representation of the total incremental strain vector (ac)

and the incremental effective stress vector (Au') where A symbolizes

finite increment. The total incremental strains are expressed as the

sum of the incremental elastic strain vector .,,e) and the incremental

plastic strain vector (&cP), i.e.

c) =,Ce) + (AEp ) (17)

Substituting Eq. 1 into Eq. 17 and solving for the incremental effective

stress vector leads to

(Aa') Is]-1 ((AC) - (AcP))
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[CE] (Ac) - [CE] (ac)p  (18)

where [CE] = [SI = /F(e) (ERI [Z -1 I  [Ra ] [Sf] -  [S1-l1) is the

nonlinear elastic material stiffness matrix and the inverse matrices can

be deduced from Tables 3 - 5; and (aj p ) is obtained from Eq. 3.

Assuming that the initial state of the soil medium is at stress

level fao), the incremental equilibrium condition at the end of load

step m+1 is expressed in terms of the virtual work principle for small

strains as (Washizu, 1968)

j m+1 a' 6( A}) dQ- J m+ILtI S((Au)) dP = 0 (19)

where 6 symbolizes virtual operator; (A) is the change in the total

strain between load step m and m+1 due to the increment in the tractions

fAt) (ft) = [ t tz J ); (u) is the three-dimensional displacement
vector (= u x U y Uz J ); Q is the domain (volume); rt  is the traction

loaded boundary (surface and line); and the pre-superscript indicates

the load step with m being the previous load step and m+1 being the cur-

rent load step. Body force terms have been neglected in Eq. 19 since

they are assumed to be included in the initial stress vector. The

incremental virtual work expression is obtained from Eq. 19 by substi-

tuting

M a') ma) + {ta')
(20)

m+1 M rM + (t)

which leads to

J LAa'J 6((A) da - J LatJ 6((Au) dr = 0 (21)

Utilizing the usual isoparametric approach to finite element analy-

sis (see Appendix I), the incremental displacements and strains are

related to the element displacements as

(Au) = [N] ap)
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{60 = [B] (ap} . . . (22)

where [N] is the matrix of shape functions describing the element dis-

placement variations; (Ap} is the element incremental displacement

vector; and [B] is the element strain-displacement matrix assuming small

strains and positive compressive strains. Details for the [N] and [B]

matrices are given in Appendix I. Substituting Eqs. 18 and 22 and into

Eq. 21 results in

[kE ] lap) = m+ 1 (&) (f) + {AfP) (23)

where

[kE] = [B] T [CE] [B] cdf

e

(element elastic stiffness matrix)

If) = [NI]T (tI} dTl + Jf [NsIT Its) dr

(element elastic load vector)

{Af p } =i [B]T [CE] ACp} d
e

(element incremental plastic load vector)
m+ 1

Additionally, (At) is the incremental load step multiplier; sub-

scripts e, 1 and s signify element, line and surface, respectively;

matrices [NI] and [Ns] are given in Appendix I; and the other symbols

retain their previously defined interpretations. Due to the isopara-

metric implementation of the elements shown in Fig. 5, the element

integrals in Eq. 23 are evaluated numerically using standard two point

Gauss-Legendre quadrature in each coordinate direction (see Appendix I).

Accumulating Eq. 23 for all the elements leads to

[KE] 'ApI = m+(st) {P) + {AP p I (24)

The matrices of Eq. 24 are defined as
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[K E] = [k E]

(system elastic stiffness matrix)

(P) = (PC) + Z {f)

(system elastic load vector)

(APP) -_2 fafP)

(system incremental plastic load vector)

in which Z signifies summation over the elements consistent with direct

stiffness assembly; and (Pc) is the applied concentrated force vector.

Condensation of the internal degrees of freedom is applied to the modi-

fied hexahedron element prior to assembly in Eq. 24 (see Appendix I for

details). Unlike most finite element stiffness equations, the discre-

tized equations of Eq. 24 are nonsymmetric. This nonsymmetry in the

stiffnes7 equations is due to the nonsymmetric constitutive relations of

the elastic constitutive matrix, [CE].

The direct solution of Eq. 24 (solution is used generically here,

the nonlinear solution strategy is presented in the next section) would

be enormous due to the large number of simultaneous equations. Conse-

quently, the direct stiffness assembly and solution procedure is based

on the unsymmetric profile (or skyline) algorithm of Taylor (1977).

Taylor's solution algorithm incorporates the symmetry of the coefficient

locations with respect to the diagonal plus the variable band structure

of the nonsymmetric finite element equations. Taylor's algorith has

been written for memory resident storage and solution. Thus, to acco-

modate the large number of equations which are encountered in solving

typical three-dimensional problems, Taylor's algorithm has been modi-

fied for out-of-core (or virtual memory) assembly and solution.

NONLINEAR SOUJFION AIDORITHM

The incremental/iterative solution procedure used to solve the

finite element discretized equations of Eq. 24 for three-dimensional

elasto-plastic cohesionless soil problems is discussed in this section.

Solution of the nonlinear equations is based on a stepwise linearization

of the equations via an incremental/iterative predictor-midpoint correc-

tor scheme which includes geometric updates at each iteration. Updating
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the geometry provides a natural (true) stress/strain representation in

the context of the small strain formulation presented in the previous

section (iisu, 1986). ThL natural stre~s/train foxia ation is iequired

to be consistent with the elasto-plastic constitutive equations deve-

loped in Hardin and Blandford (1988a,b). This solution scheme can be

classified as an initial stress approach (e.g. Zienkiewicz, 1977) for

solving elasto-plastic problems due to the elastic formulation of Eq.

24. However, rather than solve for iterative changes in the dis-

placements, strains and stresses (as is usual with the initial stress

approach) the solution for the full incremental values will be generated

based on the midpoint stiffness properties. Utilization of midpoint

constitutive properties is equivalent to using a second-order iterative

corrector scheme (Zienkiewicz, 1977).

The general solution strategy in the load-displacement space can be

written as

m [KE] (i-I) (AP}(i) = m+l (49) m[p) (i-1) + m{(App}(i-l) (25)

where m signifies the midpoint load level (i.e. m is midway between the

previous load step m and the current load step m+1); and the

parenthetical superscript signifies the iteration number. Evaluation of

the element stiffness matrices and load vectors used in Eq. 25 are ob-

tained by substituting

n - &~i - 1  , [] - [B]m (i-1)(i-1)
e e

(26)

__ (il) _ ny(i-1)
rel el es es

into Eq. 24. The midpoint geometry for iteration i is calculated by

updating the nodal coordinate vector {x) ({x) L ixn Yn Zn JT where sub-

script n represents node point n) as

:x 1 (i)mx(i m x) + i {AP}W (27)

Equations 25-27 are expressed in terms of the midpoint corrector
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iteration strategy. The predictor step is obtained for i = 1 and m m

which results in

m[KE] (0) = M[K E ] mAPP})(0) = 10)

raQn(0) = mn , m[b] 0  -m[B ]
e e

(28)

el - el ' es es

m x } ( 0 ) = m{x }

Equation 28 shows that the predictor step is based or. the converged

A-esults obtained for load step m.

The displacement vector solution of Eq. 25 is written as the sum of
the incremental elastic displacement vector {Pe} and the incremental

plastic displacement vector {4pP}, i.e.

( = {pe (i) + {AppJ(i) (29)

where

{Ape}(i)= m+l W. ) I[ m[K E]U 1) - ({p I (i-1)

m+1

ca(,&Pp M [K E] ~(i - 1) I- m ap) (i-1)

In order to evaluate Eq. 29, M+l(a) must be known. Startup (i.e.

the first load increment) of the predictor-midpoint corrector algorithm1
is based on specifying (ak), i.e. the initial incremental load step.

The load increment is adjusted in subsequent load steps by borrowing a

scheme recommended by Ramm (1981) for arc-length algorithms, i.e.

m+ ) = (A ' 6d (30)

tthwhere m (ak) is the m thload step increment, m I is the number of itera-

tions required to achieve equilibrium for the mth load step and Id is
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the desired nmber of iterations (Id - 3 - 5). This strategy automa-

tically leads to smaller load steps in areas of severe nonlinearity and

longer lengths when the response is nearly linear. An upper limit of

(&I) is imposed on Eq. 30 to reduce potential solution drift from the

equilibrium curve.

Accumulated variable quantities through iteration i for load step

m+1 are defined as

m+1 p)(i) = m(p + {AP) ( i )

m+1(Pe}(i) M r(Pe, + pe(i)

m+l{P)(i) = mPp + 1&p }(i)

m+l (,)(i)= mW,) + (a') (i)

(31)
m+1 C)(i) = r(e + (AC)(i)

m+1 Ee (i) [ Ce} + (.Ce (i)

m+1 (p (i) _M IP) + fAcP}(i)

m+1 Ix(i) m W + {Ap(i)

The incremental elastic strains and effective stresses are calculated as

{.Ce}(i) = m[B](i) ,&pe}(i)

(32)

{A,}(i) M [CEl(i-l))] (aCe)(i)

Calculation of incremental rather than iterative strains and stresses in

Eq. 32 is recommended by Key et al. (1981) for materials which involve

path dependency. Midpoint effective stresses used in the elastic mater-

ial stiffness matrix are calculated as

m1 ,}(i) = m(1 ) + (AO,(i) (33)

Termination of the iterations in Eq. 25 is based on an internal

energy criterion (Bathe and Cimento, 1980). The incremental internal
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energy criterion is

L&P I (P) < CE (34)
LAp 

8(1) -4(pE

where EE is the energy error tolerance (1 x 10- 8 . CE 1 1 x 10-4 ); and

LSpi r LApI M - LApJ (i-1) which is the iterative change in the dis-

placement vector.

Evaluating the elasto-plastic constitutive equations requires an

accurate determination of the element stresses. The element incremental

strains and stresses of Eq. 32 are evaluated at the element centroidal

quadrature point which is the optimum location for elements which only

contain complete linear polynomial representations (Barlow, 1976). Fur-

thermore, centroidal stress and strain computations with the modified

hexahedron element eliminate the necessity of recovering the condensed

bubble mode displacements since their contribution is zero at the

element centroid (Hughes, 1987). Further details on stress evaluations

is provided in Appendix I.

(ONSTITUTIVE EQUATION ( CRYATIOAL DFTAIL9

Natural elastic strain modeling requires that the void ratio e be

upadated to reflect changes in the soil volume. The initial void ratio,

e. (- eo ) , is defined as

V
e i = --- (35)

s

where Vvi is the initial volume of voids; V is the solid volume whichs

is assumed to be constant; and V. = V . + V is the initial soil volume.1 V1 5

Since the initial void ratio can be measured, the volume of solids is

calculated as

V.
V + e. (36)

Calculation of the void ratio at load level m, iteration i is obtained

as
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MV( i ) - v
w e isV (37)

s

where m(i) is the centroidal element volume for iteration i corres-

ponding to load level m. Calculation of the iterative void ratio at the

element centroid is consistent with the calculation of the constitutive

properties. The updated void ratio of Eq. 37 is used in elastic soil

function F(e) as given in Eq. 1.

If an anlysis is experiencing pure Class 1 loading, EPSAP prevents

the incremental load from experipncing sudden loading to softening

behavior in the same step. That is, if m+1 r (1) is calculated to be

greater than one in the predictor step then the load multiplier m+ AJ is

calculated as

+1 m + ;( 1 ) (m+ m++1 r -1 i

pm+1l-(1) _

to ensure that the calculated r will equal one and at p isP
calculated from Eq. 30. The scaling represented in Eq. 38 has been

implemented to distinguish between loading and softening Class 1

behavior. Class 1 behavior after the scaling of Eq. 38 is in the

softening range.

In addition, EPSAP allows for the input of arbitrary stress path

loading. This is accomplished by treating the applied load as a quasi-

time-dependent function. The piecewise linear varying loads are input

in terms of the total magnitudes for a given load interval. For each

load sequence, different increasing load magnitudes can be specified as

well as different initial load step multipliers. This allows the

analysis to build up the initial state of stress from an initial zero

state of stress, for example.

VEMIFICATION OF NUMERICAL PROCEDUR

A sequence of analyses is presented to verify EPSAP. The problems

considered are shown in Fig. 10. Figure 10(a) represents constant b
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stress paths to locate plane strain stress states. Figure 10(b) repre-

sents constant K stress paths which is used to locate one-dimensional

strain. Both problem sets of Fig. 10 represent homogenous stress/strain

problems. Hence, only a single hexahedron element discretization for

1/8th of the symmetric problem is required. The material properties

used for all analyses are:

Pa = 1.00 n = 0.50 :O0.10

S = S= S = S S 1400
x y z xy yz zx

d n 0.20 doo = 1.0ndo
A = 15 o 10

=35" r = 0.70 kf : 0.60

x 2.00 =0.24

a = 1.00 m = 0.50 = 1.50

e = 0.50 K = 0.50
0 0

' =8 aR = 15a b R

SiDma x = 40 S imin =10

mi 1 1.50 p = 0.50 X 2 = 0.71

which represent typical soil material properties but do not correspond

to any particular test results for a soil specimen. A convergence

tolerance of CE = 1x10- 8 is used for all analyses.

Considering the constant b stress paths (Fig. 10a), the principal

stresses are increment isotropically to a' = a = followed by

constant b loading where a' is constant, al is increasing and a' bo' +
3 1

(1-b)a'. Development of the initial state of stress is based on a
3

reference state of stress of zero, i.e. (a) 0 {0), and isotropic

compression stress increments of 0.001 p a (At = 0.001) for ten load

steps followed by isotropic compression stress increments of 0.01 pa (&[

0.01) until = a' = Ip. This is followed by constant b
1 3 1

stress paths with stress increments of 0.01 p a (lat = 0.01). Results

for the constant b stress path analyses are shown in Fig. 11-13 for b z

0 (triaxial compression), b = 1/2 (intermediate) and b = 1 (triaxial
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oj (increasing)

o- (constant)

=bcrI + 0I-b) a"

(a) Constant b Stress Paths (0 < b 5 I)

o-; (increasing)

o K o-;

a" KK

(b) Constant K Stress Path (1/4 :s K< I)

Fig. 10. Load Path Definitions
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extension). Figure 11 shows the plot of the major principal stress (a')

versus the major principal elastic strain, e , for the three values of

b. Figure 11 shows that increasing elastic stiffness in the direction

of major principal stress increases with aI . Furthermore, Fig. 11 shows

the difference in elastic loading and unloading curves that results from

the changing void ratio. Figure 12 presents the major principal stress

versus the major principal strain, c,, for the same three values of b.

Figure 12 shows that the model is capable of representing the increased

strength associated with intermediate b stress paths (1 > b > 0),

shifting of the peak strain and the work softening behavior. Figure 13

shows a plot of the negative plastic volumetric strain (-cp  ) versusvol
the major principal plastic strain (JP). As should be expected, the

triaxial extension analysis exhibits the greatest volumetric change with

increasing major principal plastic strain. Figure 13 shows that the

soil initially experiences volume compression which is then followed by

volume expansion.

Considering next the constant K stress paths (Fig. 10b), the major

principal stress increments are specified to be 0.001 Pa until a1  0.01

Pa, 0.o Pa until a' o.10 P and 0 . 10 Pa until o 25 P. Principal

stresses a2 af K a. Results for the one-dimensional strain (K

1/2) and isotropic compression (K = 1) stress paths are shown in Figs.

14-16. Figures 14, 15 and 16 show plots of the major principal stress

versus the major principal elastic strain; major principal stress versus

the major principal strain; and the negative plastic volumetric strain

versus the major principal plastic strain, respectively. These figures

show that the computed elastic strains are nearly equal (Fig. 14)

whereas the plastic strains are much smaller for the isotropic

compression analysis compared with the one-dimensional strain analysis

(Figs. 15 and 16). The decreased plastic behavior associated with

isotropic compression should be anticipated due increased confinement.

Figures 14 and 15 clearly show the concavity of Class 2 stress-strain

curves towards the stress axis and exhibit increased stiffness with

increasing load. Figure 16 shows that for isotropic or one-dimensional

strain loadings, the soil exhibits nearly linear volume compression.
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Fig. 11. Elastic Stress-Strain Results for Three
Class 1 Loadings
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Fig. 12. Total Stress-Strain Results for Three
Glass 1 Loadings
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Fig. 14. Elastic Stress-Strain Results for Two
Class 2 Loadings
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Fig. 15. Total Stress-Strain Results for Two
Class 2 Loadings
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SUMARY

This report has presented the constitutive equations for solving

three-dimensional elasto-plastic cohesionless soil problems for

monotonic loading via the finite element method. The soil constitutive

equations have been carefully constructed to incorporate the particulate

nature of soils, i.e. kinematics of particle movement, particle crushing

and particle contact bonding. Constitutive modeling of the elastic

component is based on the Hertz and Mindlin theories, whereas the

plastic component is formulated using stress-dilatancy theory. Since

the constitutive equations have been developed utilizing small-strain

data from wave propagation and vibration tests with data for large

strains, the coefficients used in the constitutive equations are valid

for a wide range of loading conditions.

The focus of this research effort has been to formulate soil

constitutive equations that realistically represent the particulate

behavior of soilq This is being achieved by using constitutive models

that have coefficients that are physically understandable, are neariy

constant for a wide variety of conditions, and includes initial efforts

towards understanding the effects of sample disturbance on the coeffi-

cients. Combining the physically realistic soil constitutive equations

being developed in this research with finite elements that accurately

represent boundary conditions and displacement variations provides a

method of analysis that has a good chance of predicting field perfor-

mance.

RECIGMMEWnATIOS FR PUfE RESEARCH

Though a great deal has been achieved in understanding and quanti-

fying the three-dimensional elasto-plastic behavior of soils, much work

remains to be completed for the wide variety of problems encountered in

geotechnical engineering. Some of the areas requiring additional inves-

tigation include: elasto-plastic cohesive soil behavior, cyclic loading

behavior for both cohesionless and cohesive soils, rotation of principal

stress and stress increments on the behavior of particulate materials,

and inherent and stress induced plastic anisotropy.

Additional finite element work includes implementation and testing
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of the constitutive equation developments and the utilization and veri-

fication of EPSAP for a variety of boundary value problems encountered

in geotechnical engineering. This phase will also require modifying the

constitutive equations for the special cases of plane strain and axi-

symmetric behavior. Furthermore, investigation and implementation of

large strain behavior must still be completed. The use of the developed

natural strain approach may not be computationally feasible for some

soil static problems.

Another major activity which should be undertaken is the develop-

ment of a computer simulation problem to investigate the behavior of

particle packings. A preliminary effort in this regard has been oomple-

ted during the current contract as outlined in the next section.

OCMPUI SIMULATION OF PArICLE BEHAVIOR

When attempting to explain some types of soil behavior one may be

led to speculate about the nature of particle movements within an ele-

ment of deforming soil. Which contacts within the element are experi-

encing gross sliding at a given instant of deformatior.' What is the

distribution of orientations of sliding contacts? Do groups of parti-

cles slide past one another, and if so, how many particles are in the

sliding groups? Because it is difficult to observe thb' behavior of

individual particles and contacts within a soil sample in the labora-

tory, it will apparently be instructive to simulate the behavior of a

packing of particles with a computer model.

Aspects of soil behavior that invite questions about the nature of

particle movements are: (1) the effect on soil deformation of a change

in direction of the stress increment vector (rotation of stress incre-

ment); (2) the nature and development of inherent and stress-induced

anisotropy in particulate materials; and (3) the effects of contact

cohesion on soil deformation.
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FINMTELMENT FINJLATI(N DETAILS

The purpose of this appendix is to present the finite element

formulation details associated with the three-dimensional computer

program EPSAP (Elasto-Plastic Soil Analysis Program). These formulation

details include: (1) element shape functions and shape function matrices

(which includes the element strain-displacement matrices) for the finite

elements shown in Fig. 5, (2) curvilinear coordinate transformations for

the isoparametric implementation, (3) numerical integration and (4)

stress and strain calculations.

Element Shape Functions and Shape Function Matrices

Shape functions for the elements of Fig. 5 and the shape functions

matrices are explicitly given in this section. First, the shape func-

tions corresponcng the the line load element of Fig. 5a are

N (1 - W2

(AI)
ILN = (1 + f)/2

where -1 j_ [ i 1 is the nondimensionalized local coordinate shown in

Fig. 5a and subscript i (i=1,2) corresponds to the two element node

points. The matrix of line element shape functions, [N ], is defined as

-t ftN1 0 0 N2 0 0

[N 0 N 10 0 NI0 (A2)
1 2

0 0 N 0 0 Nt
1 2

Equation A2 shows that [N I" is composed of the two basic shape functions

(Eq. Al), the positioning of the shape functions being dictated by the

nodal x-, y- and z-axis line traction values. The line tractions are

approximated as

1i



x II X ,

rq

t 0 N 0 ti X
y

S0 0NIL z j 0 J L zi

where summation on the repeated subscripts is implied and ti. t"., t

are the nodal line traction values.

The four node quadrilateral element (Fig. 5b) shape functions are

(e.g. Zienkiewicz, 1977)

Ns = 4 (1 + C ) (1 + Ino) ; i=1,2,3,4 (A4)
1 4 0 0

in which -1 < C,11 . I are normalized curvilinear coordinates (see Fig.

5b), C = i q, and ti, n are ±1 depending on node location i,

e.g. E. = -1 for i=1,4 and q. = 1 for i=3,4.1 1
The matrix of surface element shape functions, [NS], is defined to

be

N'0 0
I

[NS ]  0 o 0 (A5)
I

0 0 N'

in which the pattern of Eq. A5 is repeated for i=1,2,3,4. The surface

tractions it s  are interpolated in the same manner as the line element

tractions i.e.

t s ] Ns 0 0 t'.
X[ I X1

y oN yl (A6)

z z

o 0 N. .

where summation on the repeated subscripts is implied and t' ., t i, t s

are the nodal surface traction values.

The element shape functions for the basic eight node hexahedron

element (Fig. 5c) are (e.g. Zienkiewicz, 1977)

2



N : (1 + Cc) (1 + 110) (1 + CO) ; i=1,2,...,8 (A7)

where C0 = C ? and -1 . C j 1 (C. 1 for i=2,3,6,7; 1. 1 for i = 3,4,
0 1

7,8; i = I for i=5,6,7,8). These basic eight node hexahedron element

shape functions are used to describe the element geometry and the volume

element shape function matrix, [N]. Similar to the line and surface

element shape function matrices, the volume element shape function

matrix is defined as

N. 0 01

[N]= 0 N 0 (A)

0 0 N.
I

where iz1,2,...,8.

A disadvantage of the volume element shape functions represented oy

Eq. A7 is that they cannot represent general linear stress variations.

Wilson et al. (1973) proposed that the incompatible "bubble mode" func-

tions:

b ( 2N1  (I - C

Nb (1 - ) (A9)
2

Nb = (1 -C )
3

which are zero at all eight node points be added to element displacement

approximation in order to represent linear stress variations. The addi-

tion of the bubble mode shape functions leads to the following element

displacement variations:

0 u = N. u. + N1? a3

v = N. v. + N . a3  (AO)1 1 J y

w = N. w. + N . ai
1 I j Z

where u, v, w are the x-axis, y-axis and z-axis displacements, respec-

tively; ui, vi, w, are the standard node point displacements; and a
j

1x

3



aJ, a j (j=1,2,3) are additional degrees of freedom associated with thez
internal bubble mode shape functions. Utilizing the displacement

approximations of Eq. A10 results in a modified eight node hexahedron

element.

Equation A10 shows that the number of displacement variables for

the modified eight node hexahedron is 33 rather than the usual 24. Eli-

mination of the additional nine variables (axJ, a3  aJ; j=1,2,3) isy z
accomplished using static condensation on the element stiffness matrix.

Before pursuing static condensation, generation of the element strain-

displacement matrix for the modified eight node hexahedron element will

be presented.

The element strain-displacement matrix is obtained by first de-

fining the incremental strain-displacement relationships:

dE - 0 0x a

y 8y

dE 0 0
z az du

dv (All)

dy 5L L 0 Idwi

d xy ()" C)

dy 0 a 8
yz z sy

[dyz C)! 0 L-

where the negative sign for the direct strain increments is used since

compressive strains are positive. Substituting the displacement varia-

tions of Eq. A1O into Eq. All results in

4I



de x  -aN i/ax 0 0

EF y - )Nii/b- 0du

dez  0 0 -aNi/ dui 1

d'xy - MNi/ay N i/ax 0 dvi

dyyz  0 N i/az aNi/ay dwi

dyzx aNi/az 0 aNi/x

-aN/ax 0 0
0 -aNb /ay 0o j

b da1
0 0 -8N./ az x

+ b/) ab aaN 0/)x o y
0 aNb/az b / ay da z

2Nb /Oz 0 Mb /a

or

{d} = [B] {dp e  + [BB] Ida) (A12)

where [B ] is the strain-displacement matrix associated with the element
node point displacements {pe) and [BB] is the strain-displacement matrix

corresponding the the bubble mode displacement variables (a).

The element elastic stiffness matrix is constructed as

[kEI " [B] T [CE] [B] dfQ

e

[B] T  H B1 -- IE [B I I [BB I ] dD

.0 [BB T

1 BH T c "] [BH ] [B ] , [c I [ B'j d

[BB]T [CE] [B] [BBIT [C]E [B B ]

e



i

r [B] I [[] B(AI3)

where [B] =[[BH]  I ] is the element strain-displacement matrix.

Static condensation of the element elastic stiffness matrix is

obtained by eliminating the incremental bubble mode displacement

parameters from

[ HH I HE pe C
[kE j IN I {dp I I ) A4
I I I -- (A14)

[E 1 i 0

Expanding the lower partition of Eq. A14 results in

BH e BE
[kE] (dp I + [B I {da} = {0

{d)BB -1 BH e
[kB N Iki I {dp) (A15)

Substituting Eq. A15 into the upper partition of Eq. A14 leads to

HH HE BBE-1 ENe

N E

[k I {dp e } = {d}f (A16)

Equation A16 defines the statically condensed elastic stiffness matrix.

A problem with the formulation given by Eq. A13 is that the modi-

fied hexahedron element does not pass the patch test unless the element

geometry is at least a parallelpiped. Lack of satisfying the patch test

may lead to erroneous results. Taylor et al. (1976) designed a "repair"

for the two-dimensional version of the element such that for an arbi-

trary element geometry the modified element will pass the patch test.

Their repair involves calculating the bubble mode strain-displacement

matrix using the centroidal (i.e. C = I = C = 0) evaluation of the

Jacobian matrix and Jacobian determinant. Further details of this

calculation are presented in the curvilinear coordinate transformations

6



and numerical intergration sections.

The infinite element shown in Fig. 5d is taken from Marques and

Owen (1984) and is based on the mapped infinite element concept of

Zienkiewicz et al. (1981, 1983). Mapped infinite elements are based on

a simple mapping technique that applies to both modelling of the geome-

try and the field variable (e.g. displacements in stress analysis).

The concept underlying mapped infinite elements is most easily

understood in the context of the one-dimensional element shown in Fig.

A.1. Nodes 1, 2 and 3 (node 3 is at infinity) of Fig. A.la are mapped

onto the parent element defined by the local coordinate system -1 . C

1 as shown in Fig. A.lb. The pole (i.e. point of singularity for the

mapping) position labelled 0 in Fig. A.la is arbitrary (though its

position influences the accuracy of the results) and x0 !. x I . Once x0

is chosen, the location of node 2 is defined by

x2 = 2x1 - x0  (A17)

Interpolation between the local and global coordinate systems is

2
x(C) = 2: M i(E) xi (A18)

i=1

where the summation extends over the finite nodes only and the mapping
functions M. are given by

1

Ml  -2C/(1 - C)
1 (A19)

M2 = (1 + C)/(1 - )

Examining Eq. A19 shows that for C = -1, 0, 1 the corresponding x-coor-

dinates are x 1 , x 2 , a.

Interpolation for the x-axis displacement uses standard Lagrangian

approximations to give

3 2u = 3 N. u. = 0.5E(E-1) u1 + (1-C ) u 2 + 0.5E(C+1) u 3  (A20)
i=1 1 1

Solving Eq. A18 for C leads to

S1 - 2a/r (A21)
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in which r denotes the distance from the pole to a general point within

the element and a = x2 - x I as shown in Fig. A.la. Substituting Eq. A21

into Eq. A20 results in

2
u = u3 + (-uI + 4u2 - 3u3 ) a/r + (2u1 - 4u2 + 2u3 ) (a/r) (A22)

Thus, as r tends to infinity, u approaches u3 which is assumed to be

zero in the present implementation. Consequently, summation over the

finite nodes is all that is required in formulating the finite element

equations. Equation A22 also clearly shows the role of the pole posi-

tion, 0.

The mapping and displacement shape functions corresponding to the

eight node isoparametric element of Fig. 5d are (Marques and Owen, 1984)

M. (I + E0) (1 + i=1 (-{)/(1 - {) ; i:I,2,3,4

(A23)

M. (1 + 0) (I + 'n0 ) (1 + C)/(i - C) ; i=5,6,7,8

1 2

Ni 8 (1 + E0) (1 + (C2 - C) ; i=1,2,3,4

(A24)1
Ni = (1 + t (1 + 0( - C 2 i=5,6,7,8

Equations A23 and A24 show that the eight node isoparmetric infinite

element uses a bilinear approximation in the finite E - ' plane and a

quadratic decay in the infinite c-direction.

The infinite element strain-displacement matrix is obtained by

substituting the shape functions of Eq. A24 into the incremental strain-

displacement relationships of Eq. All which results in

8



-8N/lx 0 0

0 -8Ni/y 0
o 0 -Niz

[B] 0 N i 0 (A25)
0~/8 aNilaz 0~l
o MN /az aN./8Y

1 1
aN 8z 0 aNilax

The infinite element elastic stiffness matrix is obtained by

substituting Eq. A25 into

[kE] J j [ CT IE [B] dO

e

Curvilinear Coordinate Transformations

The element matrices and integrals of the previous section invclve

global coordinates whereas all the shape functions have been expressed

in terms of local coordinates on the appropriate parent elements.

Consequently, a transformation of coordinates between the global and

local coordinate systems is required to formulate the element stiffness

matrices and load vectors. These transformations are obtained using

isoparametric finite element transformation procedures which are des-

cribed in this section.

Basically, an isoparametric finite element formulation involves

approximating the finite element geometry (represented by shape func-

tions M. ) in the same manner as the element displacement variations in1

terms of the node point displacements (represented by shape functions

Ni), i.e. set M = N.i except for the infinite element of Fig. 5d in

which case the special geometric interpolation functions of Eq. A23 are

used. Details of the various transformations required in EPSAP are pre-

sented in the following paragraphs.

The elements used in EPSAP require the evaluation of the arc length

transformation

dr J (E) dE (A26)

where Jr(0 is the arc length Jacobian, the surface area transformation

9



dr (C ,1) d dn (A27)

where e-(E,i) is the surface area Jacobian, the volue transformation

dD = IJ(C,1,) l dt di dC (A28)

where IJ(C , ,C)1 is the three-dimensional Jacobian determinant, as well

as volume shape function derivatives with respect to x, y and z as shown

in Eqs. A12 and A25.

The arc length Jacobian of Eq. A26 is

JIF( ) !() 2 + (-y)Y2 +"8z)2

(E) = (y +(A29)

The finite element representation of Eq. A29 is obtained by substituting

x = LM {x

y = LM j {y)

z = LM I (z)

into Eq. A29 which results in

9. WdJx) J2 + .[ Lk y 2 + L9.'()J

r dt d& d

. . .(A30)

where LMA J = LNJ is the row vector of line element shape functions (Eq.

Al) and (x), {y}, (z) are the column vectors of element node point

coordinates. The arc length transformation results in the limits of

integration being -1 1 C 1.

The surface area transformation of Eq. A27 is

s (x ay -x ay 2 y 8z ay az 2 az Cx az ax 2

. . . (A31)

and the finite element form is obtained by substituting

10



x = LM J {x)
y = 1Msi (y}

z = LM {z)

into Eq. A31; LMs  = IN5 J is the row vector of surface element shape

functions given in Eq. A4; and the other symbols are as previously

defined.

The evaluation of the element volume integrals require not only the

volume transformation, but also requires the evaluation of x, y and z

coordinate derivatives as shown in the strain-displacement matrices of

Eq. A12 and A25. Since the shape functions are expressed in terms of

the nondimensionalized C, 'n and u coordinates; the x, y and z coordinate

derivatives must be related to the C, n, ? coordinate system. Using the

chain rule of differentiation

aN. a aN a . aN.
T W 5 I+ at + 8z T

a .N .aN . aN .
I x i 8y 1 az i (A32)

a()X 8y - I +
5-? ~ 5T- +Y U8

where Ni are the shape functions given in Eq. A7 or A24. Writing Eq.

A32 in matrix form results in

Ni ax ay az i i

aN. a. aN.
1 d ay aZ -I = [J] (A33)an a i an lay

aNi ax 8y 8z aNi aNi
1ax ay a 1z 1z

aa % z Caz

where [J] is the Jacobian matrix. The shape function derivatives with

respect to x, y and z can be obtained from Eq. A33 by premultiplying

both sides by the inverse Jacobian matrix, [J] - i.e.

11



aNi
aN. aN.

I 1

) F 1 (A34)

aN. aN.
-1 _1

Since the C, 11 and t shape function derivatives are straightforward, Eq.

A33 provides the partial derivatives of the shape functions with respect

to x, y and z.

The Jacobian matrix of Eq. A33 is more explicitly expressed as

CUM I ) LMJ I LMi j ( )M fy 8E1 2

aL MI x} M {y) -- (z)
[J3n C)x n an 21 22 23

aL 8tM j L[_J
-I.-- aM 31 J32 J33

(A35)

where LNJ = INJ for the modified eight node hexahedron element (see Eq.

A7) and LMJ is the row vector of mapping functions given in Eq. A23 for

the isoparametric eight node inifinte element. The Jacobian determinant

and inverse Jacobian matrix are

IJ(E, ,') = J 1 1 (J 2 2 J 3 3 -J 2 3 J 3 2 ) + J 1 2 (J 2 3J 3 1 -21J32 )

+ J13(J23J31 - J2 2J3 1 ) (A36)

J22J133 - 12332 32J13 -1 J2J33 J12J123 -22J13

J J -J J J J -J J J J - J
:1 31J23 - 21J33 J11J33 - 13J31 J21J13 - 11J23

21J32 31J22 31J12 11J32 11J22 - 1221

. . . (A37)

Substituting Eq. A36 into Eq. A28 gives the desired volme transfor-

mation for the hexahedron element. Equation A37 gives the explicit form

of the inverse Jacobian matrix which is required in Eq. A34.

As mentioned in the previous section, a special evaluation of the

bubble mode strain-displacement matrix (see Eq. A12) must be used in

12



order for the modified eight node hexahedron element to pass the patch

test for an arbitrary element geometry. This modification involves

evaluating the bubble mode shape function derivatives as (Taylor et al.,

1976 and Cook, 1981)

8b aNb
J J

ax

b c i -1 Nb (A38)

5__ TY Tcn
3y 3

L z JL Te

where IJ is the Jacobian determinant of Eq. A36, IJc I is the Jacobian

determinant evaluated at the element centroid (i.e. IJcl = IJ(E=IR=e=0)I)

and Ij ]-I is the inverse Jacobian matrix of Eq. A37 evaluated at the

element centroid. With the modification of Eq. 38 the modified eight

node hexahedron element passes the patch test. Consequently, this

element converges to the correct equilibrium solution with increasing

mesh refinement.

With the curvilinear coordinate transformations presented in this

section, the isoparametric finite element equations can be generated.

Unfortunately, due to the algebraic complexity of the transformations,

closed form evaluation of the element integrals is generally not

possible. Evaluation of the element integrals is the topic of the next

section.

Numerical Integration

Due to the complications introduced by isoparametric interpolation

into the element stiffness matrix and load vector integrals, numerical

integration (quadrature) must be used to evaluate the integrals. Typi-

cally, in finite element applications, Gaussian quadrature formulas are

used due to their superior accuracy for a given number of quadrature

point function evaluations. In the following paragraphs; line, surface

and volume integral quadrature formulas are presented.

The line traction integral is represented as

1
[Gt) P. Jri t(C) dE (A39)

r

13



where [G I(C)] [N ]T [N A. Numerical evaluation of Eq. A39 is based on

Gauas-Legendre quadrature which is represented as

G1 XIn GXI
- -[G ()] Jr (E) dC I X w. i[G (C )] J (Ci) (A40)

G.

where n is the number of Gauss-Legendre quadrature points, w. is the.th th1
i weighting coefficient and C. is the i quadrature point. The value

of nG used in this report is two and the corresponding Gauss-Legendre

data is given in Table A.I.

Evaluating the quadrilateral surface load integral and the element

volume integrals is easily obtained by extending the one-dimensional in-

tegral of Eq. A40 into the second and third dimensions, respectively.

Consequently, the surface load integral for the quadrilateral element

becomes

11I [GS(C,'n)] J'(&,'n)dt d'

G Gn nz n w. w. [G s (Ci p )]J(Eit (A41)

i=1 j= 1I j 1 F ' J

where [GS (E,q)] [NS] T [Ns ] and the volume integral for the modified

hexahedron and infinite elements becomes

-1 -1 -

G G G
n n n

YE 7-wiw k[e (C I~j?) j (C , 'IjP"k)t (A42)
i=l j=1 k=1 W 1 vk

in which [GV(C, ,{)] = [BIT [C ] (B]. The global derivatives of the N,
ep 1

shape functions used in the element strain-displacement matrices (Eqs.

A12 and A25) are calculated using the transformation of Eq. A34 whereas

the bubble mode shape function derivatives are obtained using the trans-

formation of Eq. A38.

14



Stress and Strain Calculations

The soil elasticity constitutive relationships which are used to

construct the elastic constitutive matrix, [CE], require an accurate

determination of the effective stresses {a'} = La a t I' •
Ty zz xy yz

I I. Displacement based finite element analyses typically result inzx
accurate displacement approximations but much less accurate stress

representations. Barlow (1976) investigated the existence as well as a

method of locating optimal points for calculating accurate stresses for

displacement based finite element formulations. His technique involves

subjecting the finite element to a complete polynomial field of one

order higher than the complete polynomial representation included in the

shape function approximation. The objective being to locate unique

positions within the element at which the stresses have the same degree

of accuracy as the nodal displacements. Hence, the terminology "optimum
stress locations."

Barlow (1976) found that the optimum stress point is the element

centroid (i.e. C:11= :O) for the eight node hexahedron. Numerical

ex-perimentation by the authors has verified that the centroid is also an

optimum location for the modified eight node hexahedron eiement. Con-

sequently, the element strains and stresses used to generate the elasto-

Plastic constitutive matrix are based on the element centroid for both

the modified eight node hexahedron elem-nt (Fig. 5c) and the eight node

isoparametric infinite element (Fig. 5d). Extenting the centroid stress

evaluation concept to the infinite element is based on the fact that its

shape function representation is a complete linear polynomial in terms

of ', 1 and .

Whe- evaluating the modified hexahedron element stresses at

arbritrary points, tije bubble mode displacement parameters must be known

in order to define the element strains (see Eq. A12). Racovery of the

element bubble mode parameters are )btained from Eq. Al- once the incre-

mental displacements have been generated from the nonlinear solution

procedure. However, since LB B(:=1==O)] is identically zero, no recov-

ery of the bubble mode displacements is required (Hughes, 1987). Thus,

the element incremental strains are evaluated as

{dc} : [B H 1= =O)] (dpe}  (A43)

for the moified eight node hcxahedron element and
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(dC} - [B(E=n==O)] idpe (A44)

for the isoparametric eight node infinite element. Element incremental

effective stresses are also evaluated at the centroid as

(dc') [CE] (dE) (A45)

where ICE] and (dc} are both evaluated at the element oentroid.

Table A. 1 Two Point Gauss-Legendre Quadrature Data

il wi

1 -0.57735 02691 89626 1.00000 00000 00000

2 0.57735 02691 89626 1.00000 00000 00000
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i.

_x 0_q _xX 2 -N o d e 30 o 2 at Infinity

(a) Global Represontation

I 2 3

(b) Local Representation

Fig. A.I. One-Dimensional Infinite Finite Element
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